CHOLINERGIC AGENTS: ALDEHYDE, KETONE, AND OXIME ANALOGUES OF THE MUSCARINIC AGONIST UH5

Kathryn B. Sanders,*1 Anthony J. Thomas,1 Michael R. Pavia,1 Robert E. Davis, 2 Linda L. Coughenour,2 Sharie L. Myers,2 Susan Fisher,2 and Walter H. Moos.3

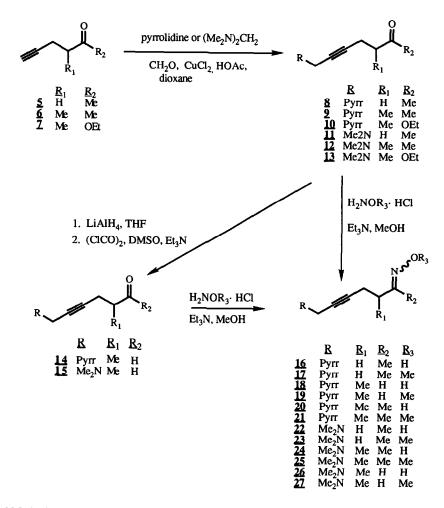
Parke-Davis Pharmaceutical Research Division Warner-Lambert Company 2800 Plymouth Road Ann Arbor, MI 48106-1047

(Received 31 March 1992; accepted 1 June 1992)

Abstract: There is considerable interest in muscarinic acetylcholine receptor (mAChR) subtype selective agents as cholinomimetics for the treatment of senile dementia of the Alzheimer's type (SDAT). A series of substituted analogs similar to the muscarinic agonists UH5 and UH28 (analogs of the muscarinic agonist oxotremorine) were synthesized and evaluated pharmacologically. Several oxime analogues of UH5 demonstrate agonist-like properties in vitro at muscarinic receptors. One oxime in this series (Compound 18) was found to be almost five fold more m₁ selective than UH5.

Although the involvement of several neurotransmitter systems has been implicated in Alzheimer's disease, the loss of forebrain cholinergic function is a consistent neurobiological abnormality. Thus, cholinomimetics may hold promise as potential therapies for SDAT. Classical cholinomimetics are clinically ineffective due to peripheral parasympathetic effects, which are often observed at very low doses.

Five sequence-unique muscarinic cholinergic receptor subtypes (mAChRs), m₁ through m₅, have recently been identified.⁶ These subtypes have been so classified by the cloning and expression of five receptors containing unique amino acid sequences. These receptors mediate some of the actions of acetylcholine, mainly in tissues localized in the brain (m₁, m₃, and m₅), and in the heart and gastrointestinal system (m₂ and m₄). The m₁, m₂ and m₃ receptors correlate pharmacologically to the M₁ (brain), M₂ (heart) and M₃ (glandular M₂) receptors, respectively.^{7,8} While selective antagonists have been developed for most of the subtypes, selective agonists have not been readily identified. Recently, UH5 and UH28 (analogs of the classical muscarinic agonist, oxotremorine) have been reported to be somewhat subtype selective muscarinic agonists.⁵ Efforts reported here are focused on the identification of muscarinic agonist analogs of UH5 and UH28 which may provide cholinomimetics with both a reduced liability for side effects (through subtype selectivity) and increased hydrolytic stability.


Previous work in the muscarinic agonist area suggested that modification of the lactam in oxotremorine may protect the compound from enzymatic oxidation and maintain agonist activity. 9.10 We anticipated that opening the lactam ring and replacing the amide nitrogen with a carbon atom might also enhance *in vivo* stability. Bradbury 11 optimized the tertiary amine region of these molecules. Combining these functional optimizations, we synthesized a series of ketone and oxime analogs of UH5 and UH28.

Scheme 1. Synthesis of Ketone and Ester Intermediates

Intermediates 3, 4 and 7 were synthesized from ethyl acetoacetate or ethyl 2-methylacetoacetate following the methods of Ritter¹² and Barbot.¹³ The route used to obtain the ketones 5 and 6 was similar to that of Resul¹⁴ and Bradbury¹¹ (Scheme 1). Mannich condensations were used to couple the terminal acetylenes with pyrrolidine or N,N-dimethylamine (generated *in situ* from bis (N,N-dimethylamino)methane), yielding compounds 8-13. Esters 10 and 13 were reduced with LiAlH₄ to the corresponding alcohols and oxidized to the aldehydes 14 and 15 under standard Swern conditions.

Aldehydes 14 and 15, and ketones 8, 9, 11 and 12 were converted to their corresponding oximes, 16-27, by reaction with the appropriate alkoxyamine hydrochlorides in the presence of triethylamine (Scheme 2). All compounds gave satisfactory analytical and spectroscopic results.¹⁵

Scheme 2. Synthesis of Target Compounds

Biological Methods

Receptor binding assays were conducted in rat neocortex. The [3H]-quinuclidinyl benzilate receptor binding assay (RQNB) assesses the ability of the test compound to compete with the muscarinic antagonist QNB. Similarly, the [3H]-cis-methyldioxolane receptor binding assay (RCMD) assesses the ability of the test compound to compete with the muscarinic agonist CMD. 18 Muscarinic subtype selectivity is assessed through a comparison of displacement of the muscarinic antagonist QNB in a genetically transformed mouse cell line (m1 C2) transfected with cloned m1 receptors (m1 -QNB m1 C2) and rat heart homogenate containing the pharmacologic m2 receptor (m2 -QNB m1 C2) respectively. 19 . 20

Results

The structure-activity relationships of these analogs are summarized in Table 1. The efficacy ratio (RQNB/RCMD, as defined in Table 1) is predictive of muscarinic agonist efficacy. Muscarinic agonists generally exhibit a ratio greater than 100, antagonists have a ratio of approximately 1, while partial agonists have ratios between 1 and 100.16,17 In our assays UH5, a full muscarinic agonist, has an efficacy ratio of 547; while compound 18 has an efficacy ratio of 96, classifying it as a partial agonist.

Table 1. Receptor Binding and Efficacy Ratios

Compound	RCMD IC ₅₀ (nM) or % inhib @0.1µM	RQNB IC ₅₀ (nM) or % inhib.@ 1.0µM	RQNB/RCMD (Efficacy Ratio)
Vatanas			
Ketones 8	214	7280	34
9	59	5696	97
11	68	65600	965
12	101	55400	549
Aldehydes			
14	1%	9%	-
15	0%	0%	-
Oximes			
16	373	1254	3
17	5%	17%	-
18	21	1928	92
19	27%	15%	-
20 21	21% 21%	15% 26%	-
21	2170	20%	<u>-</u>
22	139	36769	265
23	5%	1%	-
24 25	12%	9%	-
25 26	5% 30	3% 13230	441
27	6%	4%	-
Reference			
Compounds oxotremorine	1.5	407	308
UH5	4.5	2447	544
UH28	21.6	87876	4068
McNeil-A-343	64	5388	84

Data are expressed as the concentration of test compound that inhibits binding of 0.1 nM [3 H]-CMD or 0.03nM [3 H]-QNB by 50% (IC₅₀). The IC₅₀ values were determined from 5-7 concentrations tested in triplicate.

The target compounds display a wide range of muscarinic activity (Table 1). Within this small series the selectivity ranges from m_1 selective partial agonists, such as compound 18, to slightly M_2 selective compounds (Table 2). Small changes in structure had significant, although unpredictable, effects on affinity and selectivity.

Table 2. Relative Efficacy Values and Selectivity Ratios

Compound	RQNB/RCMD Efficacy Ratio	[³ H]-QNB IC ₅₀ (nM) Heart M ₂	[³ H]-QNB IC ₅₀ (nM) m1C2(m ₁)	M ₂ /m ₁ Selectivity Ratio
18	92	5500	920	4.8
9	97	6500	2800	2.3
26	441	34200	25900	1.3
11	965	18900	51800	0.4
UH5	544	2010	2450	0.9
UH28	4068	4460	87880	0.2
oxotremorine	308	858	364	2.4
McNeil-A-343	84	34116	7240	4.7

Data are expressed as the concentration of test compound that inhibits binding by 50% (IC 50). Data are reported as the mean of at least three determinations.

Substitution of pyrrolidine with N,N-dimethylamine consistently reduced muscarinic antagonist affinity by a factor of ten in the ketone and oxime cases (e.g. 8 vs 11 and 20 vs 26). This may reflect lipophilic and/or steric differences of the N,N-dimethylamine group versus pyrrolidine and its resultant ability to bind at the muscarinic antagonist binding site.

Several of the ketone analogs display satisfactory affinity and efficacy at the muscarinic receptor when R_1 is methyl or hydrogen (9, 11 and 12). Three of four oximes display affinity and efficacy when R_1 or R_2 is hydrogen (18, 22 and 26). Incorporation of methyl groups in both R_1 and R_2 positions (20, 24 and 25) eliminates most affinity for both the agonist and antagonist binding sites. O-Methyl oxime substitution in all cases resulted in a total loss of affinity. The steric bulk of the methyloximes may hinder binding at the muscarinic receptor and the oxime hydrogen may also be involved in some necessary hydrogen bonding at this location.

In our assays for subtype selectivity (Table 2), UH5 shows no selectivity. Oxime 18 displays a five fold increase in selectivity for the m₁ receptor subtype in comparison to UH5. The substitution of N,N-dimethylamine for pyrrolidine, in oxime 26, produces a loss of selectivity for the m₁ subtype vs the M₂ subtype. This selectivity decrease is accompanied by a ten fold decrease in antagonist affinity. A similar phenomenon can be observed in the ketone series between compounds 9 and 11. In this case, the replacement of R₁ with a hydrogen in addition to the change from N,N-dimethylamino to pyrrolidine causes a ten fold decrease in antagonist affinity. This suggests that if the efficacy ratio increases the selectivity decreases. In this series of UH5 analogs we have discovered a range of muscarinic agonist affinities and selectivities for the M₂ or m₁ muscarinic agonist receptors. In general, the oxime and ketone analogs were found to have reasonable affinity for the muscarinic receptor, while the methyloximes and aldehydes showed low/no activity. Oxime 18 is the

most potent and m₁ selective partial muscarinic agonist in this series. It exhibits a receptor binding profile consistent with muscarinic partial agonist activity and has five fold better selectivity for the m₁ agonist receptor than UH5. Oxime 18 also has the desirable quality of being a lipid-soluble free amine. While it remains unclear whether this selectivity ratio will be meaningful *in vivo*, its *in vitro* selectivity is comparable to the quaternary salt McNeil-A-343, the most selective muscarinic agonist in the literature.

References and Notes

- 1. Department of Chemistry, Parke-Davis.
- 2. Department of Pharmacology, Parke-Davis.
- 3. Chiron Corporation, 4560 Horton St., Emeryville, CA 94608
- 4. Rossor, M.N., Handbook of Psychopharmacology 1988, 20, 107.
- Bradbury, B.J., Baumgold, J., Paek, R., Kammula, U., Jacobson, K.A., J. Med. Chem. 1991, 34, 1073.
- 6. Bonner, T. I., Buckley, N. J., Young, A. C., Brann, M. R. Science, 1987, 237, 527.
- 7. Levine, R. R., Birdsall, N. J. M., Subtypes of Muscarinic Receptors IV *Trends in Pharmacol. Sci.* **1989**, 10(Suppl.), VII.
- 8. Maeda, A., Kubo, T., Mishina, N., Numa, S. FEBS Lettr. 1988, 239, 339.
- 9. Neumeyer, J., Moyer, U., Richman, J., Rosenberg, F., Teiger, D., J. Med. Chem. 1967, 10, 615.
- 10. Bebbington, A., Brimblecomb, R.W., Rowell, D.G., Br. J. Pharm. 1966, 26, 68.
- 11. Bradbury, B. J., Baumgold, J., Jackson, K. A., J. Med. Chem. 1990, 33(2), 741.
- 12. Ritter, J., Keneicki, T., J. Org. Chem. 1962, 27, 622.
- 13. Barbot, F., Mesnard, D., Migniniac, L., Org. Prep. Proc. Int. 1978, 10(6), 261.
- 14. Resul, B., Ringdahl, B., Hacksell, U., J. Med. Chem. 1988, 31, 577.
- 15. No attempt was made to separate the E, and Z isomers of these oximes. Based on trends in chemical shifts (Pretsch, Clerc, Seibel, Simon, <u>Tables of Spectral Data for Structure Determination of Organic Compounds</u>, Springer-Verlag, 1983), the more abundant isomer in the case of compounds 18 and 26 is the Z isomer. The Z/E ratios were 3.33:1 for oxime 18 and 2.79:1 for 26.
- 16. Moret, C., Patrie, I., Briley M., Meth. Find. Exptl. Clin. Pharmacol. 1988, 10(10), 619.
- 17. Coughenour, L.L., Berghoff, W.G., Meyers, S.L., Schwarz, R.D., Davis, R.E., Moos W.H., Soc. Neurosci. Abstr., 1987, 13 (part 2), (Abstr. 135.13), 487.
- 18. Freedman, S.B., Harley, E.A., Iverson, L.R., Br. J. Pharmacol. 1967, 90, 80.
- 19. Freedman, S.B., Beer, M.S., Harley, E.A., Eur. J. Pharmacol. 1988, 156, 133.
- Lai, J., Mei, L., Roeske, W. R., Chung, F-Z., Yamamura, H. I., Venter, J. C., Life Sci. 1988, 42, 2489.